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Abstract 

 
In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link 
change period is short. In order to sense the spectrum state in LEO satellite networks in real-
time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial 
neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are 
introduced to make fast and effective judgments on the spectrum state of LEO satellites by 
using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites 
and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete 
the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-
ED) algorithm is proposed based on the traditional energy detection algorithm and artificial 
neural network. The ANN module is used to determine the spectrum state and optimize the 
traditional energy detection algorithm. GEO satellites are used to fuse the information sensed 
by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite 
spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing 
delay and sensing energy consumption. The simulation results show that our proposed 
algorithm has lower complexity, the sensing delay and sensing energy consumption compared 
with the traditional energy detection method. 
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1. Introduction 

The deployment of 5G mobile systems has already started at the end of October 2019, and 
academia and industry have begun to conceptualize the direction and basic specifications for 
the next generation of mobile systems (6G). Driven by the exponential growth of data traffic 
and the continuous demand for three-dimensional ubiquitous access in the whole area, 6G 
systems need to integrate communication with computing, intelligence, and sensing 
technologies to build an integrated network that can support large-scale wireless connectivity, 
realizing a 6G era in which everything is intelligently connected and the digital and physical 
worlds are deeply integrated [1]. 

The 6G network will form a three-dimensional mobile communication network through 
GEO satellite networks, medium- and LEO satellite networks, airborne networks, and 
terrestrial mobile communication networks, forming a seamless three-dimensional global 
coverage and achieving the development goal of broadband mobile communication without 
blind spots [2]. Communication with giant constellations of LEO satellites will be one of the 
new frontiers of connectivity leading to 6G, complementing terrestrial networks and providing 
unlimited connectivity anywhere, thus helping to bridge the digital divide [3]. 

Most of the current LEO satellites use L or UHF bands, which are already very crowded at 
present, and the fixed spectrum allocation method makes a large portion of the designated 
spectrum used occasionally, which leads to low spectrum utilization [4]. Therefore, spectrum 
sensing techniques need to be accessed to deal with the problem of spectrum inefficiency. 
Spectrum sensing can find available spectrum resources in both space-time dimensions and 
effectively improve spectrum utilization efficiency. Spectrum sensing algorithms have been 
extensively studied by scholars and will be reviewed in detail in Section 2. Aiming at the 
problems of the poor real-time performance of spectrum sensing algorithms for LEO satellite 
networks, poor performance at low signal-to-noise ratio (SNR), and traditional spectrum 
sensing algorithms can only detect signals one by one, this paper proposes an ANN-based 
intelligent spectrum sensing algorithm for space-based satellite networks, which can have high 
detection accuracy with low time delay and low energy consumption, and effectively improve 
spectrum utilization efficiency. The main contributions of this paper are as follows. 

1) Combining the energy detection method with artificial intelligence, replacing the 
threshold comparison part of the traditional energy detection method with an ANN 
module, and proposing an ANN-based energy detection method, which solves the 
problem of difficult threshold setting of traditional energy detection method and has 
high detection probability even in low SNR environment. 

2) GEO satellites are introduced based on LEO satellites, and their strong arithmetic 
power and storage capacity can be used to make fast and effective judgments on the 
spectrum status of LEO satellites. 

3) Using the wide area of satellite coverage, the algorithm can sense multiple spectrums 
at the same time, effectively improving the efficiency of spectrum sensing. 

This paper is organized as follows. Section 2 presents related work, and in Section 3, a 
hybrid GEO/LEO double-layer satellite constellation and information fusion algorithm for 
GEO satellites are designed based on the Walker constellation. In Section 4, we derive the 
formula that any two satellites in a space-based network can establish an inter-satellite link. 
Then, our proposed ANN-based energy detection method for inter-satellite spectrum state 
sensing is presented in detail, and finally, the sensing quality is evaluated in terms of sensing 
delay and sensing energy consumption. In Section 5, simulations are conducted using 
MATLAB software, and the results show that the ANN-based energy detection method 
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outperforms the conventional energy detection method. Conclusions are drawn in Section 6. 

2. Related Work 
With the continuous development of satellite network technology, the number of satellites is 
increasing, especially LEO satellites, with lower orbital altitude, the coverage of satellites for 
the ground is constantly changing, and GEO and LEO satellites have their characteristics in 
terms of coverage, service quality, and system construction and deployment, etc. Many typical 
communication and navigation satellite systems use a mixed constellation structure of GEO 
and LEO to achieve global services and provide Many typical communication and navigation 
satellite systems have adopted a hybrid constellation structure for global services, providing 
differentiated and personalized service capabilities [5]. The hybrid GEO and LEO satellites 
constellation network can combine the advantages of different orbits, with flexible networking, 
especially when the LEO satellite mission is busy, GEO can relieve the pressure of LEO node 
blockage. Yan et al. [6] developed conditions for establishing inter-layer links for IGSO/MEO 
two-layer satellite networks, taking into account beam coverage. Ge et al. [7] proposed a 
heterogeneous framework combining GEO and LEO systems with a NOMA scheme to 
multiplex frequency resources and improve spectral efficiency, taking into account the uplink. 
Tengyue et al. [8] use the backbone/access network model and the "moderately connected" 
interstellar link concept to design a dual LEO/MEO link layer network architecture that meets 
the quality of service while reducing the complexity of the network system. Ge et al. [9] 
established a GEO/LEO dual-layer satellite network architecture in a frequency coexistence 
scenario, taking into account the channel and dynamic characteristics between satellite nodes, 
and improving the spectral efficiency and signal reception reliability of GEO satellites. 

For satellite spectrum sensing algorithms, Hu et al. [10] combined distributed cooperative 
sensing network with cognitive satellite ground network and proposed an EE formulation for 
cognitive network based on distributed cooperative sensing results to improve the sensing 
performance. Wang et al. [11] used DSC system to improve the sensing performance of weak 
signals and proposed a new cooperative spectrum sensing method with high detection 
probability even when the signal is relatively weak. Zheng. [12] used the gamma 
approximation to derive the false alarm probability and improve the detection probability of 
energy detection, and then introduced a closed expression for the AUC value under Gaussian 
channel to improve the traditional energy detection method. 

Conventional spectrum sensing mostly requires setting thresholds, which require a priori 
knowledge of the noise distribution or the received signal [13], is highly susceptible to SNR, 
and has certain limitations in detection results [14]. Based on the traditional algorithm, 
combining the popular machine learning and deep learning techniques [15], it can greatly 
improve the spectrum detection probability. Wu et al. [16] proposed an energy detection 
method based on short sliding windows for detecting the presence of burst signals in a short 
period. Simulation results show that the missing detection probability of this method is lower 
than the conventional detection probability in the presence of burst signals. Nandakumar et al. 
[17] proposed an intelligent energy detection method based on the gamma distribution and 
central limit theory to derive an average detection probability formula, which improves the 
detection performance. Zheng et al. [18] derived a new detection probability and false alarm 
probability based on central limit theory and then analyzed the detection performance of the 
CSS the detection performance of the system is analyzed and the traditional energy detection 
method is optimized. Krishnakumar et al. [19] introduced decision tree classification and 
random forest classification from machine learning (ML) to the cyclic steady state method and 
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energy detection method, which has high detection probability even at low signal-to-noise 
ratio, and the method achieves intelligent spectrum sensing with the help of ML classification 
technique. 

All these methods can achieve good performance in satellite communication application 
scenarios, but all of them invariably require a large amount of sampled data and a large amount 
of parallel computation. In order to reduce the complexity of the algorithm while ensuring the 
detection probability, an ANN-based energy detection method is proposed, which combines 
the robustness of neural networks and the simplicity of traditional energy detection algorithms, 
while introducing GEO satellites to obtain the visual relationship between LEO satellites and 
GEO satellites through interplanetary situational sensing, and the sensing satellites in the LEO 
layer upload the sensing information through the interplanetary link to the GEO satellite 
through the interplanetary link, uses its strong arithmetic power and storage, and then uses the 
GEO satellite to apply the algorithm to make fast and effective judgments on the spectral state 
of the LEO layer, and the algorithm also has good performance at low SNR. 

3. Satellite constellation model 

3.1 Double-layer satellite constellation 
This paper designs a hybrid GEO/LEO double-layer satellite constellation based on the Walker 
constellation, first proposed by Walker J G [20], which is special in that it has the following 
characteristics: the constellation orbits are inclined circular orbits; the constellation has a high 
degree of symmetry, with all satellites orbiting at the same altitude and inclination, and with 
the same angle between orbital planes All satellites have the same altitude and inclination, and 
the same angle between orbital planes. Therefore, the geometrical characteristics of any one 
satellite in the constellation can replace those of the others. 

The parameter 𝑄𝑄/𝑃𝑃/𝐹𝐹  is generally used to represent the satellite orbits of the Walker 
constellation. Where 𝑄𝑄 denotes the number of satellites in the constellation, 𝑃𝑃 denotes the 
number of orbital planes in the constellation and 𝐹𝐹 denotes the phase factor of the constellation 
[21]. In the Walker constellation, assuming that 𝑎𝑎 is the number of a particular satellite, the 
ascending node equinox 𝑉𝑉𝑎𝑎 and the ascending node angular distance 𝜙𝜙𝑎𝑎 of that satellite are 
expressed as (1): 

 

 �
𝑉𝑉𝑎𝑎 = 360 𝑃𝑃𝑎𝑎−1

𝑃𝑃
   (𝑃𝑃𝑎𝑎 = 1,2,⋯ ,𝑃𝑃)

𝜙𝜙𝑎𝑎 = 360 𝑃𝑃
𝑈𝑈

(𝑄𝑄𝑎𝑎 − 1) + 360 𝐹𝐹
𝑄𝑄

(𝑃𝑃𝑎𝑎 − 1)    (𝑄𝑄𝑎𝑎 = 1,2,⋯ ,𝑈𝑈 − 1)
 (1) 

 
where 𝑈𝑈 denotes the total number of satellites in each orbital plane in the Walker constellation, 
𝑃𝑃𝑎𝑎 denotes the number of satellites in orbit, and 𝑄𝑄𝑎𝑎 denotes the number of the orbit in which 
satellite 𝑎𝑎 is located. 

The LEO layer satellites were selected from the Walker constellation in the configuration 
64/8/1, with an orbital altitude of 800 KM and an orbital inclination set at 60°, with 64 LEO 
satellites evenly distributed over 8 orbital planes. The purpose of adding three GEO satellites 
to the LEO layer satellites is to fuse the information sensed by the LEO satellites with the GEO 
satellites to give a spectrum decision, and three GEOs will enable coverage of all LEO 
satellites. Fig. 1 shows the GEO/LEO double-layer satellite network topology. 
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Fig. 1. GEO/LEO satellite network topology 

3.2 Information fusion algorithm 
In this paper, a soft judgment fusion algorithm is used. After the LEO sensing satellite has 
completed the local sensing data acquisition, it does not give a judgment result but uploads the 
collected raw data to the GEO information fusion center. Therefore, even if a small error 
occurs during the transmission process, it will not affect the final verdict. This fusion method 
increases the complexity of the algorithm but improves the detection probability. The data 
transmission process is shown in Fig. 2.  
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Fig. 2. Schematic of GEO soft judgment 

4. Intelligent spectrum sensing 
The interplanetary spectrum sensing algorithm should keep the detection probability while 
keeping the sensing delay and energy consumption as low as possible. The algorithm in this 
paper consists of three parts: the interplanetary link situational sensing phase, the 
interplanetary spectrum state sensing phase, and the sensing quality assessment phase. 

4.1 Interstellar link situational sensing 
Visibility between two satellites is a prerequisite for establishing a link for inter-satellite 
spectrum sensing. In general, two conditions are generally met for satellite visibility: 
geometric visibility and antenna visibility. 
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4.1.1 Geometric visual conditions 
Assuming that 𝑅𝑅𝑒𝑒 denotes the radius of the Earth, as shown below, the communication links 
of satellite 𝑆𝑆𝐴𝐴 and satellite 𝑆𝑆𝐵𝐵 are tangent to the atmosphere at that moment.  
 

h

dA
dB

LABβBA

βAB

SA

SB

 
Fig. 3. Satellite geometry view 

 
From Fig. 3, satellite 𝑆𝑆𝐴𝐴 and satellite 𝑆𝑆𝐵𝐵 establish an inter-satellite link as in (2). 

 

 

⎩
⎪
⎨

⎪
⎧𝜃𝜃𝐴𝐴 > −𝛽𝛽𝐵𝐵𝐴𝐴   𝑜𝑜𝑜𝑜   𝜃𝜃𝐵𝐵 > −𝛽𝛽𝐴𝐴𝐵𝐵

𝛽𝛽𝐴𝐴𝐵𝐵 = arccos � 𝑅𝑅𝑒𝑒+ℎ
𝑅𝑅𝑒𝑒+𝑑𝑑𝐴𝐴

�

𝛽𝛽𝐵𝐵𝐴𝐴 = arccos � 𝑅𝑅𝑒𝑒+ℎ
𝑅𝑅𝑒𝑒+𝑑𝑑𝐵𝐵

�
 (2) 

 
where 𝜃𝜃𝐴𝐴 denotes the pitch angle of satellite 𝑆𝑆𝐵𝐵 relative to satellite 𝑆𝑆𝐴𝐴 and 𝜃𝜃𝐵𝐵 denotes the pitch 
angle of satellite 𝑆𝑆𝐴𝐴 relative to satellite 𝑆𝑆𝐵𝐵. Translating the above equation into a distance is 
expressed as (3). 
 
 𝐿𝐿𝐴𝐴𝐵𝐵＜�(𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐴𝐴)2 − (𝑅𝑅𝑒𝑒 + ℎ)2 + �(𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐵𝐵)2 − (𝑅𝑅𝑒𝑒 + ℎ)2 (3) 
 

4.1.2 Antenna visibility conditions 
An inter-satellite link can only be established between satellites if both satellites are in the 
scanning range of both antennas, as shown in Fig. 4. 
 

SA

SB

γA

γB

 
Fig. 4. View of the satellite dish 

 
For satellites 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 to satisfy the chain building condition, they should also satisfy the 

relationship in (4). 
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 𝜃𝜃𝐴𝐴 > 𝛾𝛾𝐴𝐴 − 90°   𝑜𝑜𝑜𝑜    𝜃𝜃𝐵𝐵 > 𝛾𝛾𝐵𝐵 − 90° (4) 
 

Translate the above equation into a distance representation as (5). 
 

 𝐿𝐿𝐴𝐴𝐵𝐵＞（𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐴𝐴）𝑐𝑐𝑜𝑜𝑐𝑐𝛾𝛾𝐴𝐴+(𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐵𝐵)𝑐𝑐𝑜𝑜𝑐𝑐𝛾𝛾𝐵𝐵 (5) 
 

In summary, the conditions for the establishment of an inter-satellite link between the two 
satellites are as follows: 
 
 (𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐴𝐴)𝑐𝑐𝑜𝑜𝑐𝑐𝛾𝛾𝐴𝐴 + (𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐵𝐵)𝑐𝑐𝑜𝑜𝑐𝑐𝛾𝛾𝐵𝐵＜𝐿𝐿𝐴𝐴𝐵𝐵＜�(𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐴𝐴)2 − (𝑅𝑅𝑒𝑒 + ℎ)2 +
�(𝑅𝑅𝑒𝑒 + 𝑑𝑑𝐵𝐵)2 − (𝑅𝑅𝑒𝑒 + ℎ)2  (6) 
 

4.2 Inter-satellite spectrum state sensing 
In the interplanetary spectrum state sensing phase, the transmission loss of the signal in the 
channel is first objectively analyzed and then the received signal is detected using ANN-based 
energy detection to determine the occupation status of the band. 

4.2.1 Path cost of signal transmission 
Based on the wide area of satellite coverage, it is assumed that the sensing satellite can receive 
signals in 𝑀𝑀  frequency bands, with 𝑀𝑀  signals denoted as 𝑥𝑥 = [𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑀𝑀]𝑇𝑇 . When the 
signals are transmitted in the channel, they will be interfered by Doppler shift, path fading ,and 
noise, affecting the signal quality at the receiving end. Fig. 5 shows the inter-satellite channel 
transmission model, assuming 𝑀𝑀 Gaussian noise signals as 𝑛𝑛 = [𝑛𝑛1,𝑛𝑛2,⋯ ,𝑛𝑛𝑀𝑀]𝑇𝑇. 
 

Source Doppler shift

Gaussian noise

SinkPath loss

Intersatellite channel

 
Fig. 5. Inter satellite channel model diagram 

 
The resulting Doppler shift is given by (7). 

 
 𝑓𝑓𝑑𝑑 = 𝑓𝑓 ∙ |𝒗𝒗|

𝑐𝑐
∙ 𝑹𝑹∙𝒗𝒗

|𝑹𝑹|∙|𝒗𝒗| = 𝑓𝑓 ∙ 𝑹𝑹∙𝒗𝒗
𝑐𝑐∙|𝑹𝑹| (7) 

 
where 𝑓𝑓 is the carrier frequency (𝐻𝐻𝐻𝐻) transmitted by the satellite, 𝑐𝑐 is the speed of light in a 
vacuum (𝑚𝑚 ∙ 𝑐𝑐−1), 𝑹𝑹 is the distance vector and 𝒗𝒗 is the velocity vector. 

When the unit of 𝑑𝑑 is 𝑘𝑘𝑚𝑚 and the unit of 𝑓𝑓 is G𝐻𝐻𝐻𝐻, the free space propagation loss 𝜉𝜉 is 
given by (8). 

 𝜉𝜉 = 𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑2
= 𝑐𝑐2

(4𝜋𝜋𝑑𝑑𝜋𝜋)2
 (8) 
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Then the signal received by the sensing satellite is 𝑦𝑦 = [𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑀𝑀]𝑇𝑇 and the frequency 
is 𝑓𝑓 + 𝑓𝑓𝑑𝑑. 
 

 𝑦𝑦𝑖𝑖 = 𝜉𝜉 ∗ 𝑥𝑥𝑖𝑖 + 𝑛𝑛𝑖𝑖  , 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀 (9) 
 

4.2.2 ANN-based multi-node inter-satellite spectrum sensing algorithm 
Spectrum sensing is the detection of the presence of a signal 𝑥𝑥(𝑡𝑡) in a frequency band, a 
problem that can be translated into a binary hypothesis test, with 𝐻𝐻0 indicating that only noise 
is present, i.e., the spectrum is free, and 𝐻𝐻1 indicating that a signal is present, i.e., the spectrum 
is occupied. 
 

 𝑦𝑦(𝑡𝑡) = � 𝑛𝑛(𝑡𝑡)   ∶ 𝐻𝐻0 
𝜉𝜉 ∗ 𝑥𝑥(𝑡𝑡) + 𝑛𝑛(𝑡𝑡) ∶ 𝐻𝐻1

    0＜𝜉𝜉＜1 (10) 

 
The most common and simplest method of spectrum sensing is energy detection [22] 

(Energy Detection, ED), which is a non-coherent detection process. As shown in Fig. 6, in the 
energy detection method, after the signal 𝑦𝑦(𝑡𝑡) is received, 𝑁𝑁 denotes the number of signal 
sampling points, and the cumulative energy at 𝑁𝑁 points of this signal is calculated and then 
compared with the threshold value 𝜆𝜆 indicating the noise energy, thus completing the detection 
of the signal. The traditional energy detection method does not use a priori knowledge of the 
signal and is not complicated to implement, but it is difficult to set a suitable threshold, 
especially at low SNR, where noise will annihilate the less energetic signal, making the 
performance of the energy detection method fall off a cliff. 
 

FFT |FFT|2BPFADC
y(t)

 
Fig. 6. Flow chart of energy detection method 

 
The fixed spectrum allocation method makes a large portion of the designated spectrum 

used occasionally, resulting in low spectrum utilization. Therefore, intelligent spectrum 
sensing technology is needed to deal with the problem of low spectrum efficiency. Intelligent 
spectrum sensing can find available spectrum resources in both space and time dimensions, 
effectively improving spectrum utilization efficiency. The combination of the energy detection 
method with support vector machines (SVM) in Saber et al. [23] is well validated in Bicaïs et 
al. [24]. This paper combines the energy detection method with a neural network and proposes 
an ANN-based energy detection method (ANN-ED), as shown in Fig. 7. The algorithm 
replaces the energy and threshold comparison part with an ANN module, to improve the 
detection probability at low signal-to-noise ratios.  

Assuming that the number of samples of the received signal through the BPF is 𝑁𝑁′, the 
|FFT|2 of these samples is used as input to the neural network, which is used to automatically 
adjust the weight of each |FFT|2 and then give an objective spectral decision. The algorithm 
makes full use of the simplicity of the energy detection method and the robustness of the neural 
network to find the characteristics of the received signal with and without 𝑥𝑥(𝑡𝑡) by means of 
the neural network, solving the problems of the traditional energy detection method in terms 
of difficulty in setting thresholds and deteriorating performance at low signal-to-noise ratios.  
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Fig. 7. ANN-based energy detection flow chart 

 
Most traditional energy detection methods are based on single signal-by-signal detection. 

Using the wide area of sensing satellite coverage, signals from several different frequency 
bands are received simultaneously, and the occupancy status of multiple frequency bands can 
be detected simultaneously. The ANN-based multi-node energy detection method is shown in 
Fig. 8. 
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Fig. 8. ANN-based multi-node energy detection flow chart 

 
In the GEO information fusion center, the signals are weighted and fused when receiving 

signals from different frequency bands sent by sensing satellites. The magnitude of the 
received SNR determines the assignment of the weighting coefficients [25], which are 
calculated as (11). 
 

 𝛽𝛽𝑖𝑖 = 𝛾𝛾𝑖𝑖

�∑ 𝛾𝛾𝑖𝑖𝑀𝑀
𝑖𝑖=1

 (11) 

 
where 𝛾𝛾𝑖𝑖 denotes the SNR of the 𝑖𝑖th signal received, 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀. 

The quantized received signal is 𝑌𝑌 = [𝛽𝛽1𝑌𝑌1,𝛽𝛽2𝑌𝑌2,⋯ ,𝛽𝛽𝑀𝑀𝑌𝑌𝑀𝑀]𝑇𝑇 , where 𝑌𝑌𝑖𝑖 =
[𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2,⋯ ,𝑦𝑦𝑖𝑖𝑖𝑖], 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀. Assuming that the satellite's BPF bandwidth is 𝐹𝐹𝑐𝑐 and the 
spectrum sensing period is 𝑇𝑇, according to Nyquist's sampling theorem, the satellite's sampling 
frequency is 2𝐹𝐹𝑐𝑐 when the information of the original signal can be preserved intact. The 
filtered signal is then subjected to an FFT, noted as 𝑌𝑌(𝑓𝑓) = [𝑌𝑌1(𝑓𝑓),𝑌𝑌2(𝑓𝑓),⋯ ,𝑌𝑌𝑀𝑀(𝑓𝑓)]𝑇𝑇, where 
𝑌𝑌𝑖𝑖(𝑓𝑓) = [𝑌𝑌𝑖𝑖1(𝑓𝑓),𝑌𝑌𝑖𝑖2(𝑓𝑓),⋯ ,𝑌𝑌𝑖𝑖𝑖𝑖′(𝑓𝑓)], 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀.  

The input to the ANN is then expressed as (12). 
 

 𝑥𝑥𝑀𝑀×𝑖𝑖′ = 𝑌𝑌(𝑓𝑓) =

⎣
⎢
⎢
⎡ |𝑌𝑌11(𝑓𝑓)|2

|𝑌𝑌21(𝑓𝑓)|2
|𝑌𝑌12(𝑓𝑓)|2

|𝑌𝑌22(𝑓𝑓)|2
⋯

|𝑌𝑌1𝑖𝑖′(𝑓𝑓)|2

|𝑌𝑌2𝑖𝑖′(𝑓𝑓)|2
⋮ ⋱ ⋮

|𝑌𝑌𝑀𝑀1(𝑓𝑓)|2 |𝑌𝑌𝑀𝑀2(𝑓𝑓)|2 ⋯ |𝑌𝑌𝑀𝑀𝑖𝑖′(𝑓𝑓)|2⎦
⎥
⎥
⎤
 (12) 

 
The ANN internal formula is given by (13). 
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        𝑏𝑏𝑙𝑙×𝑀𝑀 = �

𝜔𝜔11 𝜔𝜔12
𝜔𝜔21 𝜔𝜔22

⋯
𝜔𝜔1𝑖𝑖′
𝜔𝜔2𝑖𝑖′

⋮ ⋱ ⋮
𝜔𝜔𝑙𝑙1 𝜔𝜔𝑙𝑙1 ⋯ 𝜔𝜔𝑙𝑙𝑖𝑖′

� [𝑥𝑥𝑀𝑀×𝑖𝑖′]𝑇𝑇 + �

𝑢𝑢11 𝑢𝑢12
𝑢𝑢21 𝑢𝑢22 ⋯

𝑢𝑢1𝑀𝑀
𝑢𝑢2𝑀𝑀

⋮ ⋱ ⋮
𝑢𝑢𝑙𝑙1 𝑢𝑢𝑙𝑙1 ⋯ 𝑢𝑢𝑙𝑙𝑀𝑀

� (13) 

 
where each row of the input matrix 𝑥𝑥𝑀𝑀×𝑖𝑖′ corresponds to the |FFT|2 of one received signal 
sampling point, the matrix 𝜔𝜔𝑙𝑙×𝑖𝑖′ represents the weight matrix, each element corresponds to 
the weight of each input point, and 𝑙𝑙 represents the number of hidden layer neurons. each 
column of 𝑏𝑏𝑙𝑙×𝑀𝑀 corresponds to the computed result of one received signal. 

In this paper, the sigmoid function is chosen as the activation function. This function is 
non-linear and can approximate any function. 
 

 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

 (14) 
 

Then the output of ANN is given by (15). 
 

 𝑐𝑐 = 𝑓𝑓(𝑏𝑏𝑙𝑙𝑀𝑀) = [𝑐𝑐1 𝑐𝑐2 ⋯ 𝑐𝑐𝑀𝑀] (15) 
 

where, 
 

 𝑐𝑐𝑖𝑖 = �1, 𝑐𝑐𝑖𝑖𝑠𝑠 > 𝜁𝜁
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑜𝑜  (16) 

 
𝑐𝑐𝑖𝑖𝑠𝑠 denotes the output of the sigmoid activation function, if 𝑐𝑐𝑖𝑖 =0, it means the detected 

band is spare, if 𝑐𝑐𝑖𝑖 =1, it means the detected band is occupied, ζ denotes the decision threshold. 
𝑖𝑖 = 1,2,⋯ ,𝑀𝑀. 

4.3 Sensing quality assessment 
The quality of the sensing is assessed by two indicators, namely the spectrum sensing latency 
and the energy consumption. In the process of spectrum sensing, it is important to keep the 
sensing latency as low as possible and the energy consumption as low as possible, while 
ensuring the probability of detection. 

The nodal delay within the star is assumed to be 𝑇𝑇𝐿𝐿(𝑔𝑔, 𝑖𝑖), which is the signal processing 
delay after signal 𝑖𝑖  is received by sensing satellite 𝑔𝑔 ; 𝑔𝑔  denotes the sensing satellite that 
received the frequency request, 𝑖𝑖 denotes the signal received in band 𝑖𝑖, where 𝑔𝑔 = 1,2,⋯ ,64 
and 𝑖𝑖 = 1,2,⋯ ,𝑀𝑀. 
 

 𝑇𝑇𝐿𝐿(𝑔𝑔, 𝑖𝑖) = 𝑁𝑁 ∙ 1
𝐹𝐹𝑠𝑠𝐵𝐵𝐵𝐵𝐵𝐵(𝑔𝑔,𝑖𝑖)

+ 𝑡𝑡 (17) 
 

where 𝐹𝐹𝑐𝑐𝐵𝐵𝑃𝑃𝐹𝐹(𝑔𝑔, 𝑖𝑖) denotes the sampling frequency of the signal in the 𝑖𝑖th band received by 
sensing satellite 𝑔𝑔, and 𝑡𝑡 denotes the system time delay during the in-satellite judgment of the 
spectrum state. 

Assuming that 𝐸𝐸 denotes the perceived energy consumption of a sensing session, combined 
with the perceived time delay, the objective function and constraints are given by (18). 
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 𝑚𝑚𝑖𝑖𝑛𝑛{𝐸𝐸} = 𝑚𝑚𝑖𝑖𝑛𝑛 {𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑖𝑖 + 𝐸𝐸𝑖𝑖} (18) 
 𝑐𝑐. 𝑡𝑡.∀𝑔𝑔 = 1,2,⋯ ,64，∀𝑖𝑖 = 1,2,⋯ ,𝑀𝑀 

 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑖𝑖 = 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑖𝑖𝑇𝑇𝐿𝐿(𝑔𝑔, 𝑖𝑖) 

 𝐸𝐸𝑖𝑖 = 𝑁𝑁 ∙ 𝑏𝑏𝑠𝑠 ∙ 𝐸𝐸𝑒𝑒 

 𝑇𝑇𝐿𝐿(𝑔𝑔, 𝑖𝑖)  ≤ 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 
 

where 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝑔𝑔𝑖𝑖 denotes the power of the 𝑖𝑖th signal received by sensing satellite 𝑔𝑔, 𝐸𝐸𝑖𝑖 denotes 
the energy consumption of the GEO satellite to adjudicate the 𝑖𝑖th band state, 𝐸𝐸𝑒𝑒 denotes the 
energy consumption at the receiving end, and 𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚 denotes the maximum time delay within 
sensing satellite 𝑔𝑔 during spectrum sensing. 

5. Simulation results and analyses 

5.1 Inter-satellite Spectrum Sensing Scenarios 
In this paper, we use STK to create a GEO/LEO double-layer satellite network, naming the 
64 LEO satellites as LEO𝑔𝑔 , 𝑔𝑔 = 1,2,⋯ ,64. 3 GEO are named GEO𝑐𝑐 , 𝑐𝑐 = 1,2,3. 3 GEOs 
evenly distributed in GEO. LEO1 is selected as the sensing satellite and the sensing time is 
0:00 am on April 17, 2022, denoted as 𝑡𝑡0. LEO operates at a period of approximately 80 min, 
with 8 satellites in each orbit, so the sensing period is set to 10 min and the visibility matrix is 
updated every 10 min. 

The sensing satellite receives signals from several different frequency bands and then 
uploads the raw data to the GEO Information Fusion Centre, which adjudicates the spectral 
state of the LEO layer through its powerful computing and storage capabilities. Simulations 
using Satellite Tool Kit software yielded 2D and 3D plots of the Walker constellation, as 
shown in Fig. 9. 

 

 
Fig. 9. GEO/LEO double layer constellation constructed by STK 

 

5.2 Simulation of real spectrum environment 
This paper simulates the interplanetary channel scenario using a white Gaussian channel with 
a sensing spectrum of 300 MHz-800 MHz and a bandwidth of 500 MHz, setting the bandwidth 
of a single band at 10 MHz, which can be divided into a total of 50 bands. In order to simulate 
the real satellite spectrum environment, the signal needs to be simulated. In this paper, the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 3, March 2023                                   991 

inter-satellite service signal (FM signal) is generated based on the ON/OFF source model, 
assuming that the signal arrival process obeys Poisson distribution with parameter 𝜆𝜆 , the 
average interval time of signal arrival obeys exponential distribution with parameter 𝜇𝜇, and 
the signal duration obeys geometric distribution with parameter 𝜀𝜀. The model parameters are 
set as shown in Table 1. 
 

Table 1. Model parameter settings 
Model parameter Parameter value 

𝜆𝜆 0.2 
𝜇𝜇 5 
 𝜀𝜀 0.2 

𝑇𝑇𝑚𝑚𝑎𝑎𝑚𝑚/𝑚𝑚𝑐𝑐 2 
𝐸𝐸𝑒𝑒/𝑛𝑛𝑛𝑛 50 

𝑏𝑏𝑠𝑠/𝑏𝑏𝑖𝑖𝑡𝑡 ∙ 𝑐𝑐−1 1 
 

All 64 LEO satellites and 3 GEO satellites are taken, and the visibility relationship between 
satellites is analyzed by STK to get the satellite's chain building at any moment, then the 
satellite's visibility matrix is imported into MATLAB through the interface, and the satellite's 
channel (300 MHz-800 MHz) is modeled by MATLAB to simulate the path loss and Doppler 
shift between satellites. 
 

 
Fig. 10. Visual relationship diagram of LEO1 and GEO 

 
Fig. 10 shows the visual relationship between LEO1 and GEO satellites at that moment. 

The visual relationship between the sensing satellite LEO1 and GEO satellites is obtained by 
interplanetary situational awareness, where 1 indicates that the two satellites are visible and 
an interplanetary link can be established, and 0 indicates that the two satellites are not visible. 
From the Fig. 10, we know that LEO1 is visible with GEO1 and GEO2, and LEO1 will 
establish an interplanetary link with GEO1. 

 

 
Fig. 11. Service signal spectrum 
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Fig. 12. Occupancy status chart for each frequency band 

 
At the moment 𝑡𝑡0, the spectrum of the service signal generated by the source model is 

shown in Fig. 11. The signal is then analyzed for spectrum occupancy, and Fig. 12 shows the 
occupancy of the signal from 300 MHz to 800 MHz, with 1 indicating that the band is in the 
occupied state and 0 indicating that the band is in the spare state. At the moment 𝑡𝑡0, bands 10, 
15, 30 and 40 are occupied and the rest of the bands are spare. 
 

5.3 Performance evaluation of the ANN-ED algorithm 
In this paper, the ANN module contains an input layer, a hidden layer and an output layer 

with a total of three topologies. In the actual satellite spectrum environment, the SNR is not 
constant, so signals with different SNRs are required for training the network to improve the 
detection performance of the network. MATLAB is used to generate a signal database that 
consists of FM signals with different SNRs (SNR∈[-25dB, -5dB]) of FM signals and Gaussian 
white noise signals, where the FM signal corresponds to an output of 1 and only the Gaussian 
white noise corresponds to an output of 0. The number of sampling points 𝑁𝑁 of the signals is 
4096. To ensure that the number of signals meets the test requirements, we compare the 
detection probabilities 𝑃𝑃𝒅𝒅 of different numbers of signals (𝑙𝑙=20), as shown in Table 2. 
 

Table 2. Detection probability for different numbers of signals 
 Signal Type Training Test 𝑷𝑷𝒅𝒅 

1 Signal and Noise 1400 700 0.9871 
Noise 200 200 

2 Signal and Noise 2800 1400 0.9829 
Noise 400 400 

3 Signal and Noise 3500 2100 0.9857 
Noise 800 800 

 
The detection performance of the network with SNR∈[-25dB, -5dB] is shown in Table 2. 

By comparing the detection probabilities of different numbers of training and test sets, it is 
clear that the detection probability of class 1 is the highest. Then we divide the training set and 
test set for class 1 data. And the detection probability of the network at different division ratios 
is shown in Table 3. 
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Table 3. Detection probabilities for different division ratios 

Signal Type Training Test proportion 𝑷𝑷𝒅𝒅 

Signal and Noise 1200 900 3:2 0.9171 
Noise 300 100 

Signal and Noise 1400 700 16:9 0.9871 
Noise 200 200 

Signal and Noise 1500 600 7:3 0.9314 
Noise 250 150 

 
From Table 3, it can be seen that the network with the division ratio of 16:9 has the best 

detection performance and the best performance of the neural network, which can guarantee 
the correctness of the test results. Combining the results in Table 2 and Table 3, within 
SNR∈[-25dB, -5dB], taking a step size of 1, each SNR corresponds to 100 FM signals, for a 
total of 2100 FM signals, and then 400 Gaussian white noise signals are generated, and the 
signal database is composed of these 2500 signals. Each FM signal corresponds to a label of 
1, and each noise signal corresponds to a label of 0. After disordering the 2100 FM signals, 
the training and test sets are divided in the ratio shown in Table 4. 

 
Table 4. Division of data sets 

Signal Type Training Test 
Signal and Noise 1400 700 

Noise 200 200 
 

The overall detection performance of the network at SNR∈[-25dB, -5dB] can be obtained 
by training the network with the ratios divided in Table 4. 

To determine the number of neurons in the hidden layer, this paper uses a more intuitive 
approach by testing the spectral detection probability 𝑃𝑃𝑑𝑑 and the false alarm probability 𝑃𝑃𝜋𝜋 of 
the system under different numbers of neurons. Table 5 shows the detection performance of 
the system with different numbers of neurons. 
 

Table 5. Detection performance of a different number of neurons 
𝒍𝒍 𝑷𝑷𝒅𝒅 𝑷𝑷𝒇𝒇 
5 0.9829 0.0138 

10 0.9771 0.0288 
20 0.9857 0.0138 
40 0.9929 0.0075 
60 0.9814 0.0163 
80 0.9843 0.0088 

 
It can be seen that the system has the best detection probability of 0.9929 and false alarm 

probability of 0.0075 when the number of neurons is 40 and the SNR∈[-25dB, -5dB]. 
After training the neural network, the spectral environment with different SNRs in Section 

5.2 is then simulated. The sensing satellite LEO1 uploads the received signals of different 
frequency bands to the GEO1 information fusion center, and GEO1 weights the signals of 
different frequency bands by SNR, and then applies these two methods to judge the occupancy 
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status of each band separately. A comparison of the detection performance of the ANN-ED 
method with the traditional energy detection method for SNR∈[-25dB, -5dB] is given in Fig. 
13. Where the number of Monte Carlo experiments for each SNR case is set to 1000. 

 

 
Fig. 13. Probability diagram for spectral detection by different methods 

 
Fig. 13 shows the comparison of the detection probability of different spectrum detection 

methods at different SNRs. The performance of the traditional energy detection method drops 
precipitously at low SNRs, with a probability of only about 10% at a SNR of -11 dB. The 
detection probability of ANN-ED method at low SNR is greatly improved, reaching 90% 
detection probability at SNR of -19 dB. The detection probability reaches 100% at a SNR of -
10 dB. This is because it is very difficult to set the threshold value in the conventional energy 
detection method. When the SNR deteriorates, a noisy signal with very high interference is 
recognized as a useful signal, and therefore a weak signal with low energy cannot be 
recognized. 

The performance improvement of the algorithm proposed in this paper has the following 
reasons. First, the proposed algorithm trains the ANN with the signal and noise at each SNR 
and the corresponding spectral state, and through continuous optimization, automatically finds 
the relationship between signal and noise at different SNRs, with a high probability of 
detection even when the SNR deteriorates. Secondly, the AI algorithm is introduced into the 
traditional energy detection method, which combines the simplicity of energy detection 
method and the robustness of neural network, and is able to detect the occupation status of 
multiple frequency bands at the same time, effectively improving the efficiency of spectrum 
detection. Finally, the proposed algorithm only needs to sample 𝑁𝑁′ points in the signal that 
can pass through the filter passband, which reduces both the latency and energy consumption 
of the system, thus reducing the overhead of spectrum sensing for the entire satellite network.  
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Fig. 14. Relationship between sensing delay and sensing number of times 

 
The relationship between the sensing delay and the number of sensing times is shown in 

Fig. 14. As the number of spectrum sensing times increases, the sensing delay of the traditional 
energy detection method and the ANN-ED method gradually increases, and the delay of the 
ANN-ED method is much smaller than that of the traditional energy detection method, because 
the traditional energy detection method has to detect each signal one by one, while the ANN-
ED method can detect signals of multiple frequency bands at the same time, which makes the 
spectrum sensing delay significantly reduced. 

 

 
Fig. 15. Relationship between sensing energy consumption and sensing number of times 

 
The energy consumption of sensing versus the number of sensing times is shown in Fig. 

15. For the ANN-ED method, when the transmission rate is 1 𝑏𝑏𝑖𝑖𝑡𝑡 ∙ 𝑐𝑐−1 and the number of 
sensing times is 12, the sensing energy consumption is approximately 53.7 mJ, which is much 
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lower than that of the traditional energy detection method. Because the traditional energy 
detection method requires all nodes sampled in the system to participate in the energy detection 
at each detection, while the ANN-ED method only requires some of the nodes 𝑁𝑁′, the system 
sensing can make the energy consumption much smaller than the traditional energy detection 
method even though the delay is guaranteed to be low. 

6. Conclusion 
In this paper, an ANN-based intelligent spectrum sensing algorithm for space-based satellite 
networks is proposed to make fast and effective judgments on the spectrum status of LEO 
satellites with the help of the strong computing power of GEO satellites. A two-layer satellite 
network consisting of 3 GEO satellites and 64 LEO satellites is constructed. In the inter-
satellite link situational sensing phase, the visibility relationship between satellites is analyzed 
to obtain the visibility matrix between satellites at the current moment and set the detection 
period to periodically update the visibility matrix between satellites. In the inter-satellite 
spectrum state sensing phase, the sensing satellite LEO uploads the sensing information to the 
GEO information fusion center, and then the GEO applies the trained ANN-ED algorithm to 
make objective judgments on the received signals and give spectrum decisions. In the sensing 
quality assessment phase, the sensing delay and sensing energy consumption are analyzed. 
The simulation results show that the ANN-based energy detection method has a higher 
detection probability and less delay and energy consumption for spectrum sensing than the 
traditional energy detection method. Finally, the topological changes of the satellite network 
are detected periodically and the visual matrix of the satellite is corrected in real time. 

In future research, we will consider how to further improve the spectrum detection 
probability and reduce the spectrum sensing delay based on the research work in this paper, 
and implement the spectrum allocation based on the spectrum sensing algorithm proposed in 
this paper. 

References 
[1] L. Wang, Q. Wang, L. Jin, J. Zhu, P. Chen, and J. Han, “Research and Application Exploration of 

6G Communication Network System Architecture,” in Proc. of 2022 IEEE 2nd International 
Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, 
China, pp. 742-745, 2022. Article (CrossRef Link). 

[2] S. Chen, Y. -C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, Requirements, and 
Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-
Rate, and Movement Speed,” IEEE Wireless Communications, Vol. 27, No. 2, pp. 218-228, Apr. 
2020. Article (CrossRef Link). 

[3] M. Giordani and M. Zorzi, “Non-Terrestrial Networks in the 6G Era: Challenges and 
Opportunities,” IEEE Network, Vol. 35, No. 2, pp. 244-251, Mar./Apr. 2021.  
Article (CrossRef Link). 

[4] W. Sun, X. Liu, K. Zheng, Y. Xu, and J. Liu, “Spectrum Utilization Improvement for Multi-
Channel Cognitive Radio Networks with Energy Harvesting,” in Proc. of 2021 International 
Conference on Networking and Network Applications (NaNA), Lijiang City, China, pp. 1-7, 2021.  
Article (CrossRef Link). 

[5] Z. Lu, J.Z. Tian, J. Zhao, and W.C. Zhao, “Design of management and control architecture for 
high-low orbit hybrid satellite network,” Journal of China Academy of Electronic Science, Vol. 15, 
No. 1, pp. 15-19, 2020. Article (CrossRef Link). 

 
 

http://doi.org/doi:%2010.1109/ICETCI55101.2022.9832223
http://doi.org/doi:%2010.1109/MWC.001.1900333
http://doi.org/doi:%2010.1109/MNET.011.2000493
http://doi.org/doi:%2010.1109/NaNA53684.2021.00009
http://doi.org/doi:10.3969/j.issn.1673-5692.2020.01.003


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 3, March 2023                                   997 

[6] H. Yan, Y. Zhang, R. Zhang, L. Zeng, and W. Jia, “Inter-layer Topology Design for IGSO/MEO 
Double-Layered Satellite Network with the Consideration of Beam Coverage,” in Proc. of 2018 
IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 
pp.750-754, 2018. Article (CrossRef Link). 

[7] R. Ge, D. Bian, J. Cheng, K. An, J. Hu, and G. Li, “Joint User Pairing and Power Allocation for 
NOMA-Based GEO and LEO Satellite Network,” IEEE Access, Vol. 9, pp. 93255-93266, 2021. 
Article (CrossRef Link). 

[8] M. Tengyue, Y. Weibing, and Z. Jingjing, “Design of LEO/MEO Double-Layer Satellite Network,” 
in Proc. of 2019 6th International Conference on Information Science and Control Engineering 
(ICISCE), Shanghai, China, pp. 1022-1026, 2019. Article (CrossRef Link). 

[9] R. Ge, D. Bian, K. An, J. Cheng, and H. Zhu, “Performance Analysis of Cooperative 
Nonorthogonal Multiple Access Scheme in Two-Layer GEO/LEO Satellite Network,” IEEE 
Systems Journal, Vol. 16, No. 2, pp. 2300-2310, Jun. 2022. Article (CrossRef Link). 

[10] J. Hu, G. Li, D. Bian, S. Shi, R. Ge, and L. Gou, “Energy-Efficient Cooperative Spectrum Sensing 
in Cognitive Satellite Terrestrial Networks,” IEEE Access, Vol. 8, pp. 161396-161405, 2020. 
Article (CrossRef Link). 

[11] Y. Wang, X. Ding, J. Li, T. Hong, and G. Zhang, “Performance analysis of Spectrum Sensing based 
on Distributed Satellite Clusters,” in Proc. of 2022 IEEE/CIC International Conference on 
Communications in China (ICCC Workshops), Sanshui, Foshan, China, pp. 65-70, 2022.  
Article (CrossRef Link).  

[12] Y. Zheng, “Performance of Improved Energy Detection in Gaussian Channel,” in Proc. of 2021 
IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, 
China, pp. 435-438, 2021. Article (CrossRef Link).  

[13] P. Nimudomsuk, M. Sanguanwattanaraks, K. Srisomboon, and W. Lee, “A Performance 
Comparison Of Spectrum Sensing Exploiting Machine Learning Algorithms,” in Proc. of 2021 
18th International Conference on Electrical Engineering/Electronics, Computer, 
Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, pp. 102-
105, 2021. Article (CrossRef Link).  

[14] G. Hongjian, L. Yang, A. Chunyan, and H. Biyao, “A Three-step Cooperative Spectrum Sensing 
Algorithm Based on Historical Sensing Information Prediction,” in Proc. of 2021 IEEE 6th 
International Conference on Signal and Image Processing (ICSIP), Nanjing, China, pp. 1198-1203, 
2021. Article (CrossRef Link).  

[15] Z. Shi, W. Gao, S. Zhang, J. Liu, and N. Kato, “Machine Learning-Enabled Cooperative Spectrum 
Sensing for Non-Orthogonal Multiple Access,” IEEE Transactions on Wireless Communications, 
Vol. 19, No. 9, pp. 5692-5702, Sept. 2020. Article (CrossRef Link). 

[16] W. Wu, Z. Wang, L. Yuan, F. Zhou, F. Lang, B. Wang, and Q. Wu, “IRS-Enhanced Energy 
Detection for Spectrum Sensing in Cognitive Radio Networks,” IEEE Wireless Communications 
Letters, Vol. 10, No. 10, pp. 2254-2258, Oct. 2021. Article (CrossRef Link).  

[17] S. Nandakumar, T. Velmurugan, U. Thiagarajan, and M. Karuppiah, M. M. Hassan, A. Alelaiwi 
and M. M. Islam, “Efficient Spectrum Management Techniques for Cognitive Radio Networks for 
Proximity Service,” IEEE Access, Vol. 7, pp. 43795-43805, 2019. Article (CrossRef Link).  

[18] Y. Zheng, Y. Xia, and H. Wang, “Spectrum Sensing Performance Based on Improved Energy 
Detector in Cognitive Radio Networks,” in Proc. of 2020 IEEE International Conference on 
Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, pp. 405-408, 2020. 
Article (CrossRef Link). 

[19] V. Krishnakumar, P. Savarinathan, T. Karuppasamy, and A. Jayapalan, “Machine Learning based 
Spectrum Sensing and Distribution in a Cognitive Radio Network,” in Proc. of 2022 International 
Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, pp. 1-4, 
2022. Article (CrossRef Link).  

[20] Y. Wei, H. Li, and X. Du, “An Efficient LEO Global Navigation Constellation Design Based on 
Walker Constellation,” in Proc. of 2020 IEEE Computing, Communications and IoT Applications 
(ComComAp), Beijing, China, pp. 1-6, 2020. Article (CrossRef Link). 

http://doi.org/doi:10.1109/ICCT.2018.8600224
http://doi.org/doi:10.1109/ACCESS.2021.3078458
http://doi.org/doi:%2010.1109/ICISCE48695.2019.00206
http://doi.org/doi:10.1109/JSYST.2021.3091781
http://doi.org/doi:10.1109/ACCESS.2020.3020846
http://doi.org/doi:10.1109/ICCCWorkshops55477.2022.9896718
http://doi.org/doi:10.1109/ICPICS52425.2021.9524281
http://doi.org/doi:10.1109/ECTI-CON51831.2021.9454875
http://doi.org/doi:10.1109/ICSIP52628.2021.9688638
http://doi.org/doi:10.1109/TWC.2020.2995594
http://doi.org/doi:10.1109/LWC.2021.3099121
http://doi.org/doi:10.1109/ACCESS.2019.2906469
http://doi.org/doi:10.1109/ICAICA50127.2020.9181901
http://doi.org/doi:10.1109/ICCCI54379.2022.9740824
http://doi.org/doi:10.1109/ComComAp51192.2020.9398888


998                                                                                                 Yang et al.: An ANN-based Intelligent Spectrum  
Sensing Algorithm for Space-based Satellite Networks 

[21] J. Y. Li, M. Hu, X. Y. Wang, F. F. Li, and J. H. Xu, “Analysis of Configuration Bias Maintenance 
Control Method for LEO Walker Constellation,” China's space science and technology, Vol. 41, 
No. 2, pp. 38-47, 2021. Article (CrossRef Link). 

[22] A. Bujunuru and T. Srinivasulu, “A Survey on Spectrum Sensing Techniques and Energy 
Harvesting,” in Proc.of 2018 International Conference on Recent Innovations in Electrical, 
Electronics & Communication Engineering, Bhubaneswar, India, pp. 751-755, 2018.  
Article (CrossRef Link).  

[23] M. Saber, A. El Rharras, R. Saadane, A. H. Kharraz, and A. Chehri, “An Optimized Spectrum 
Sensing Implementation Based on SVM, KNN and TREE Algorithms,” in Proc. of 2019 15th 
International Conference on Signal-Image Technology & Internet-Based Systems, Sorrento, Italy, 
pp. 383-389, 2019. Article (CrossRef Link). 

[24] S. Bicaïs, A. Falempin, J. -B. Doré, and V. Savin, “Design and Analysis of MIMO Systems Using 
Energy Detectors for Sub-THz Applications,” IEEE Transactions on Wireless Communications, 
Vol. 21, No. 6, pp. 3678-3690, Jun. 2022. Article (CrossRef Link). 

[25] P. Verma, “Weighted Fusion Scheme for Cooperative Spectrum Sensing,” in Proc. of 2020 
International Conference on Industry 4.0 Technology (I4Tech), Pune, India, pp. 186-190, 2020. 
Article (CrossRef Link). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Xiujian Yang received a bachelor's degree. He graduated from Shandong University of 
Science and Technology with a bachelor's degree in communication in 2021. Master of 
Information and Communication Engineering, School of Computer and Communication 
Engineering, Beijing University of Science and Technology. His research interests include 
space communications, cognitive radio technologies, and resource allocation algorithms. 
 
 
 
 

 
Lina Wang received the M.S. and Ph.D. degrees in communication and information systems 
from the Harbin Institute of Technology in 2001 and 2004, respectively. She is currently a 
Professor with the Department of Communication Engineering, School of Computer and 
Communication Engineering，University of Science and Technology Beijing. Her research 
interests include space communications, cognitive radio technologies, resource allocation 
algorithms, satellite positioning algorithms, and rateless codes. 
 

http://doi.org/doi:10.16708/j.cnki.1000-758X.2021.0020
http://doi.org/doi:10.1109/ICRIEECE44171.2018.9009159
http://doi.org/doi:10.1109/SITIS.2019.00068
http://doi.org/doi:10.1109/TWC.2021.3123220
http://doi.org/doi:10.1109/I4Tech48345.2020.9102638

